Past and future flooding in Bangladesh

Insa Thiele-Eich1, Thomas Hopson2, Thorsten Simon3, Clemens Simmer1

1Meteorological Institute, University of Bonn, Germany 2National Center for Atmospheric Research, Boulder, Colorado 3Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck, Austria

Currently, an average of about 20% of the land surface in Bangladesh is flooded each year, affecting one of the most densely populated regions in the world.

We aim
- to understand past and future flooding in the Ganges-Brahmaputra-Meghna (GBM) basin, and
- to assess how climate change compares to the impact of man-made structures such as Farakka barrage, built across the Ganges on the border between India and Bangladesh and operating since 1975.

Understanding past trends in extreme water levels

Data: daily water levels (Station Dhaka, SW42) for 1909-2009
Method: extreme value theory, block maxima approach

Figures 2 and 3: (a) shows the GEV distributions fitted to annual minimum (left) and maximum (right) water levels for 1909–1939 (blue) and 1979–2009 (red); estimated parameters location μ, scale σ and shape ξ are plotted in (b). Error bars depict 95% confidence intervals obtained from non-parametric bootstrapping ($R = 500$). Return level plots with 95% confidence intervals are shown in (c).

The magnitude and duration (not shown, see [1]) of average flood events decreased, the frequency of extreme flood events has increased. A significant decrease in the annual minimum water level is detected between the time periods 1909–1939 and 1979–2009.

Understanding what the future might bring

Data: average daily precipitation in GBM catchment (Fig 2) for 1978 - 2010
Model output: four historical and six future 1° CCSM ensemble members for Representative Concentration Pathways RCP2.6 and RCP8.5 (1850 - 2100)

Method: Proxy discharge constructed from observed average daily upper-catchment precipitation by varying a moving average and lagging the observed precipitation to observed discharge. Assuming this relationship remains the same in the future, the optimal settings were used to calculate the proxy discharge from both present and future model output.

When comparing return levels for both the present and future, it can be seen that return levels increase (Fig 4). This effect is more pronounced in model simulations using RCP8.5, where what is e.g. a 15 year flood in present-day climate has a return period of ~11 (8 years by 2050 (2090)). A significant increase in flood duration is detected during the 21st century, but only for RCP8.5 (Fig 5).

References:

Acknowledgement: This work was partly carried out within the framework of the priority program 1233 „Megacities Megachallenges“, for which funding was provided by the German Research Foundation DFG.
Contact information: imech@uni-bonn.de

What do we conclude?
- Our analyses shows varying behavior in past extreme water levels and duration, with both flood frequency and flood duration increasing in the future, in particular for RCP8.5 (Fig 2,3,4,5).
- Decreasing minimum water levels could be due to Farakka barrage, and are of particular concern due to an increasing risk in mortality associated with low water levels (Fig 2, 6, 7).
- In addition to sea-level rise (Fig 8), man-made structures and accompanying political concerns over water-sharing are likely to be of great importance when addressing the implications of future changes in extreme water levels in Bangladesh.