Large scatter and multicollinearity fluctuations in the 20th century mass loss of 30 Alpine glaciers

Mathias Huss 1,2, Regine Hock 3, Andreas Bauder 4 and Martin Funk 2

1Department of Geosciences, University of Fribourg, 1700 Fribourg, Switzerland
2Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, 8092 Zürich, Switzerland
3Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska 99775-7230, USA
4Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich, 8092 Zürich, Switzerland

Introduction

The ongoing retreat of mountain glaciers strongly impacts on the hydrological cycle, climate change-economic losses in alpine regions and is expected to dominate eustatic sea level rise over the next century. Large time series of glacier mass balance represent a key to projecting future glacier changes and understanding the glacier-climate linkage, in particular glacier response to large-scale climatic forcings. However, mass balance is only measured on some selected glaciers and thus the typical length of the records is a few decades (Kaser et al., 2006). We present thirty new time series of glacier surface mass balance, accumulation and melt over the past 100 years in the Swiss Alps (Fig. 1). The data set includes different glacier sizes, exposures and regions, and thus constitutes the first long term mass balance time series being representative on a mountain range scale.

20th century Alpine glacier mass loss

All glaciers show considerable mass loss, but rates differ strongly between individual glaciers (Fig. 2). 100-year cumulative mass balance varies between -11 m water equivalent (w.e.) and -26 m w.e. (Gries, with an arithmetic average of -26 m w.e. These strong differences in the response of glacier mass balance changes in climate forcing are attributed to an interaction of several processes. Large and flat glaciers tend to have more uniform mass balance changes during a given time reaction time. Positive and negative albedo feedback mechanisms, as well as changing winter precipitation, variable on smaller spatial scales than air temperatures, might also explain some of the differences. Mass loss is particularly rapid in the 1940s and late 1970s (Fig. 2). This indicates that glacier mass loss over the 20th century was not linear, but exhibits long term variations (Fig. 3a to 3c).

Relation to large-scale forcing

We find variations in the rate of glacier mass loss in the Swiss Alps with a period of 65 years, which are significantly anticorrelated to the Atlantic Multidecadal Oscillation (AMO) index. Positive AMO leads to pronounced mass loss, during periods of negative AMO Swiss glaciers showed slow mass loss or slight gain. The AMO refers to the anomaly in the sea surface temperature in the North Atlantic (Fig. 3b) and showed persistent oscillations with a period of 60-100 years over the last millennium (e.g. Gray et al., 2004). North Atlantic variability had a recognizable impact on glaciers in the European Alps for at least 250 years (Fig. 4). The AMO is related to the thermohaline ocean circulation, which is projected to weaken over the next decades (Knight et al., 2003). During the next decades, this might result in a decrease of rates of glacier mass loss compared to the last years.

Methods

The results are based on a comprehensive set of field data and modelling. For each, glacier, up to 10 high accuracy digital elevation models (DEMs) covering the last 100 years were used to providing ice volume changes in subdecadal to semicentennial periods (Bauder et al., 2007). In addition, almost 10000 direct observations of annual mass balance and winter accumulation, as well as discharge records from proglacial streams are available (Fig. 1). This data base was used to constrain a distributed mass balance modelling. For each glacier, up to 10 high-accuracy digital elevation models (DEMs) were used to provide ice thickness and elevation changes (Huss et al., 2008). Glacier mass balance data were obtained from a data base with glacier mass balance data from the 1940s to the 1980s. The model provides distributed surface mass balance components in daily resolution for every glacier on a 25x25m grid. Mean specific mass balance is calculated over annual updated glacier surface area.

Fig. 1: (a) Overview map. Investigated glaciers (orange) are numbered according to their size which is indicated by the color of the data. (b) Periods covered with field data displayed by bars: (i) Ice volume changes (dates of DEMs shown with triangles), (ii) Annual mass balance, (iii) winter accumulation, and (iv) discharge.

Fig. 2: Cumulative mean specific mass balance of 30 glaciers and their total cumulative volume change in the 20th century (30-glacier average). Grey: individual glaciers; black: all glaciers; red line: mean, with black error bars representing ±1 standard deviation. Mean specific mass balance (m w.e. per year): 20th century average: -26 m w.e. 30-glacier average: -26 m w.e. Mean specific mass balance for the individual glaciers: -2 m w.e. to -36 m w.e. The spread in the data is marked by the grey line and the grey square. The red line represents the arithmetic average. Numbered symbols of the right-hand side indicate glacier size (color), name (Fig. 1b) and section (Fig. 1a). The dash-dotted blue line (right-hand side axis) shows the cumulative total volume change of the 30 glaciers, two short periods with mass gain and two periods with fast mass loss are marked.

Fig. 3: (a) 11-year running mean of the annual glacier melt anomaly averaged over the 30 glaciers, and (b) annual accumulation and precipitation anomaly (deviations from the 1908-2008 average). (c) Atlantic Multidecadal Oscillation index (AMO). A shuffle superimposed on a linear trend is shown. (d) Atlantic Multidecadal Oscillation index (AMO) (ebel et al., 2008). (a) Atlantic Multidecadal Oscillation index (AMO). A shuffle superimposed on a linear trend is shown. (d) Atlantic Multidecadal Oscillation index (AMO) (ebel et al., 2008). (a) Atlantic Multidecadal Oscillation index (AMO). A shuffle superimposed on a linear trend is shown. (d) Atlantic Multidecadal Oscillation index (AMO) (ebel et al., 2008). (a) Atlantic Multidecadal Oscillation index (AMO). A shuffle superimposed on a linear trend is shown. (d) Atlantic Multidecadal Oscillation index (AMO) (ebel et al., 2008). (a) Atlantic Multidecadal Oscillation index (AMO). A shuffle superimposed on a linear trend is shown. (d) Atlantic Multidecadal Oscillation index (AMO) (ebel et al., 2008).

Fig. 4: (a) Reconstructed AMO index (Gray et al., 2004) and (b) summer (JJA) temperature from instrumental data in the Greater Alpine Region (Auer et al., 2007) (11-year low-pass filtered). (c) Observed length change of Unterer Grindelwaldgletscher (Röthlisberger and Zumbühl, 1995) showing the late phases of glacier advance in response to cooler temperatures.