Making Earth’s earliest continental crust
- an analogue from voluminous Neogene silicic volcanism in NE-Iceland

Sylvia E. Berg 1,2,*, Valentin R.Troll 1, Steffy Burchardt 1, Morten S. Riishuus 2, Frances M. Deegan 1,3,4, Chris Harris 1, Martin J. Whitehouse 1 & Ludvik E. Gustafsson 5

1Dept. of Earth Sciences, CEFEGIS, Uppsala University, Uppsala, Sweden. 2Nordic Volcanological Centre, Inst. of Earth Sciences, University of Iceland, Reykjavik. Dept. of Geosciences, Swedish Museum of Natural History Stockholm, Sweden. 3Dept. of Geophysical Sciences, University of Cape Town, Rondebosch, South Africa. 4Samband Islenskra Sveitarfélag, Reykjavik, Iceland. 5Correspondence: sylvia.berg@geo.uu.se

1 Voluminous silicic rocks in NE-Iceland

Voluminous silicic volcanism in Iceland represents a long-standing petrological dilemma (e.g. Camerlenghi, 1996; Ronov, 2013). The Neogene volcanic complexes around Borgarfjörður Eystri are the second-most voluminous exposure of silicic eruption rocks in Iceland (Fig. 1 & 2). However, the origin, significance and duration of the ~500 km³ of dominantly explosive silicic activity is not yet constrained (e.g. Jakobsson, 2008).

2 Zircon U/Pb geochronology

Precise in-situ Sm-Nd zircon U-Pb ages from 11 key lithological units in the region (Fig. 3A-B) show a 3-stage evolution of silicic volcanism in NE-Iceland:

1) Silicic igneous activity commenced with eruption of rhyolite (15.3 ± 0.3 Ma; AE-17, AE-1A) and dacite (15.4 ± 0.2 Ma, AE-18) and later (13.5 ± 0.15 Ma; IG-22) from central volcanic complexes around Borgarfjörður Eystri, NE-Iceland boxed in green.

2) Followed by simultaneous large-scale caldera-forming ignimbrite eruptions from Rauðhólar (13.4 ± 0.3 Ma; IS-39, D-50) and Dýrhóllir (12.4 ± 0.0 Ma) and from Herfell central volcano (12.9 ± 0.6 Ma).

3) Silicic activity ended abruptly with dacite–lava flow and tuff deposits of 12.7 ± 0.1 Ma, which were formed by small-scale basaltic eruptions.

Zircon ε₁₈O core–rim traverses (Fig. 4)

- Most show no significant ε₁₈O variation form core to rim, no isotope zoning of ε₁₈O.
- The magmatic ε₁₈O composition predicts zircon crystallisation.
- Absence of significant ε₁₈O increase with differentiation indicates ongoing assimilation.

Magmatic ε₁₈O variation over time shows a 2-stage trend (Fig. 5):

1) Basaltic ε₁₈O becomes progressively lower in ε₁₈O until they reach a minimum at ~12.3 Ma.
2) Followed by a ε₁₈O increase along with extension of large-volume ε₁₈O in the whole region, to finally approach δ₁₈O values around ~12 Ma as dacies and basalts erupt (Fig. 5A).

Low δ₁₈O magmas calcitimated at ~12.0 Ma. (Fig. 5B)

3 Zircon oxygen isotopes

- The magmatic ε₁₈O of silicic rocks inferred from δ₁₈O (< -10 ‰ for Hawaiian MORB, -8 to -6 ‰ for SW Pacific MORB) shows that the magmatic ε₁₈O composition predicts zircon crystallisation.
- Absence of significant ε₁₈O increase with differentiation indicates ongoing assimilation.
- Magmatic ε₁₈O variation over time shows a 2-stage trend (Fig. 6). Basaltic ε₁₈O characteristically becomes progressively lower in ε₁₈O until they reach a minimum at ~12.3 Ma. Followed by a ε₁₈O increase along with extension of large-volume ε₁₈O in the whole region, to finally approach δ₁₈O values around ~12 Ma as dacies and basalts erupt (Fig. 6).

4 Neogene plume flare within Plume-Related Flank-Rift Zone

- High assimilation rates require special circumstances that can explain the rapid generation of silicic magmas, as well as the sudden end of silicic volcanism in the region:
 - Voluminous outburst of silicic volcanism (Fig. 6) is likely caused by either:
 1) A Neogene rift initiation (Nordy et al., 2011).
 2) The birth of a flank-rift zone out of the mantle rift, associated with a Neogene flare of the Iceland plume (Summers & Minshull, 2015).
- The plume-related magma regime offers a plausible analogue for the palaeo-formation of the (earliest) voluminous plume-continental crust in a pre-subduction (~3 Ga) early Earth (Hawkesworth & Kemp, 2006).