The Earth and plate tectonics
The Earth and Plate Tectonics

Summary

‘The Earth and Plate Tectonics’ workshop gets to grips with the wide-ranging evidence for the theory that underpins our detailed modern understanding of our dynamic planet – the theory of Plate Tectonics.

The workshop begins with an introduction and progresses through a series of activities that are designed to help students develop their understanding. It uses several independent sources of evidence supporting the theory, including using rock and fossil evidence, seismic records, geothermal patterns, geomagnetism, and large-scale topographical features, both above and below sea-level.

The workshop provides a reconstruction of plate movements over the past 450 million years which explains the record contained in the rocks of the UK - of an amazing journey across the face of our planet. It concludes by investigating some of the Earth hazards linked to plate tectonics, and how we can reduce loss of life.
The Earth and Plate Tectonics

Workshop outcomes

The workshop and its activities provide the following outcomes:

• an introduction to plate tectonics;
• distinction between the ‘facts’ of plate tectonics and the evidence used to support plate tectonic theory;
• a survey of some of the evidence supporting plate tectonic theory;
• an introduction to the evidence for the structure of the Earth and the links between the structure of the outer Earth and plate tectonics;
• explanation of some of the hazards caused by plate tectonic processes - earthquakes and eruptions
• methods of teaching the abstract concepts of plate tectonics, using a wide range of teaching approaches, including practical and electronic simulations;
• approaches to activities designed to develop the thinking and investigational skills of students;
• an integrated overview of the plate tectonic concepts commonly taught to secondary pupils through the KS4 National Curriculum for Science, as laid out in the GCSE Science specifications.
Think through the processes using this wide range of activities:

Note: those practical activities needing apparatus/materials are shown with a *

- The big picture and the ‘facts’ of plate tectonics
- The Story for Teachers: Plate Tectonics
- What Wegener knew – and what he didn’t know
- Continental Jigsaws*
- Model Earth – Plasticine™ spheres*
- From Magnetic Globe to Magnetic Rock Evidence*
- The earthquake distribution evidence
- Earthquakes - the slinky seismic waves demo*
- Wave Motion – student molecules
- The seismic evidence for the structure of the Earth
- Why are the Earth’s tectonic plates called plates?*
- Properties of the Mantle – potty putty™*
- What drives the plates?
- The heat flow evidence
- Evidence from the age of the sea floor
- Constructive plate margins - adding new plate material
- Faults in a Mars™ Bar*
- The magnetic stripes evidence*
- Model an ocean floor offset by transform faults*
- Destructive plate margins - recycling material
- Partial Melting*
- Volcano in the Lab*
- Plates in Motion – cardboard replica*
- Fold Mountains in a Chocolate Box*
- Plate Riding – how is the plate you live on moving now?
- Plate margins and movement by hand
- Prediction of Earthquakes – ‘Brickquake’*
- Tsunami – making waves*
The Earth and Plate Tectonics

Carry out risk assessments before the following activities:

Model Earth - Plasticine™ spheres
Magnetic stripes
Partial melting
Volcano in the lab
Prediction of earthquakes – ‘Brickquake’
Party popper simulation
The Earth and Plate Tectonics

The big picture
and the ‘facts’ of plate tectonics
The Earth and Plate Tectonics

The Earth has a crust, mantle, outer and inner core

The Internal structure of the Earth - reproduced with kind permission of USGS, redrawn by ESEU
The Earth and Plate Tectonics

The upper part of the mantle and the crust

Over geological time the mantle can flow
The Earth and Plate Tectonics

A subduction zone

When the currents in the mantle carry one plate down -
It partially melts and volcanoes are produced
The Earth and Plate Tectonics

A subduction zone

Sometimes the molten rock cools down below the surface

Subduction zone ('partially melts and volcanoes are produced' 'molten rock cools down below the surface') - reproduced with kind permission of USGS, redrawn by ESEU
The Earth and Plate Tectonics

A subduction zone

When two plates carrying continents collide – mountain chains are built.
The Earth and Plate Tectonics

An oceanic ridge

If plates are being destroyed, new plate material must be being made somewhere else -

... at new plate margins
The Earth and Plate Tectonics

Map of plates
This is a map of plate margins today

Map of plates - reproduced with kind permission of USGS, redrawn by ESEU
The Earth and Plate Tectonics

- So – that is the ‘big picture’ of plate tectonics

- But plate tectonics is not a series of facts, as suggested in the story above, but is a theory supported by evidence

- But what is this evidence and how does it support the theory?
The Earth and Plate Tectonics

- Where did the theory of plate tectonics come from?
- Back in the early 1900s, long before plate tectonics, Alfred Wegener put forward his theory of ‘continental drift’
- His story is an excellent example of ‘How science works’
- Test the thinking behind his theory using the ESEU ‘What Wegener knew’ PowerPoint

The following slides give ‘highlights’ of the ‘What Wegener knew’ PowerPoint
What Wegener knew - and what he didn’t know

How Science Works: Alfred Wegener’s ‘Continental Drift’ theory

- based on his 1929 book
What Wegener knew - and what he didn’t know

Find out -
what Wegener knew:
• continental coastline shape
• continental geology
• fossil evidence
• biological evidence
• geophysical evidence
• palaeoclimate evidence
• longitude evidence

what Wegener didn’t know:
• sloping zones of earthquakes beneath trenches
• earthquakes and volcanic activity at ocean ridges
• ocean floor magnetic stripes
• age of the ocean floor
• lithosphere and asthenosphere
• modern movement of continents

about Wegener:
• contrasts between Wegener’s ‘continental drift and today’s ‘plate tectonics’
• why Wegener wasn’t believed
• Wegener’s adventurous life

All this - and more - through this interactive PowerPoint

Note: Wegener is pronounced as ‘vain’ (without the ‘n’) followed by ‘gun’ and ‘er’

© The Earth Science Education Unit
Copyright is waived for use of this presentation within the laboratory or classroom

According to UK copyright law (detailed on http://www.mda.org.uk/cbasics.htm), copyright on literary works expires 70 years after the death of the author, even if the work is republished elsewhere. All the diagrams used here are from Wegener’ republished work and, since he died in 1930, are out of copyright. They are taken from the translation by John Biram published by Dover (New York) in 1966. However, if you believe your copyright is being infringed, please contact us. We welcome any information that will help us to update our records.
In 1910, Wegener noted, as others had before him, that the coastlines on either side of the Atlantic had similar shapes.

Hypothesis? - what explanations might account for this?

- the continents were once together and have drifted apart
- there was once a continent in between, that has sunk
- it is coincidence
- the continents and coastlines were made that way
The geology - the ‘picture on the jigsaw’

• Wegener found a scientific paper published in 1927 by du Toit (pronounced ‘dew toy’) showing that the geology of the South American and African coast areas matched closely

• Hypothesis? - what might account for this match?

the continents were once together and have drifted apart

or

there was once a continent with similar geology in between, that has sunk

or

it is coincidence or they were made that way
The fossils - more ‘picture on the jigsaw’

• Wegener knew about the published evidence that *Glossopteris* and related plants were found on different southern hemisphere continents - as shown in green on this ‘reconstruction’ of these continents (evidence from other fossils is also shown)

• **Hypothesis?** - what could have caused this distribution?

 the continents were once together and have drifted apart

or
 there were once ‘sunken continents’ or ‘land bridges’ between the continents

or
 vegetation rafts, with their ‘cargo’ of animals floated on ocean currents between the continents
The palaeoclimate - more ‘picture on the jigsaw’

- Wegener and his father-in-law, Köppen, studied modern and ancient (palaeo-) climates. They noted that large ice sheets are only found in polar regions today. But published papers showed that 300 million year old rocks on the southern continents and India have evidence showing they were covered by ice sheets then (scratched rocks and ancient moraine and till deposits).

Hypothesis? - what could have caused this pattern?

- the continents were once near one of the poles, but have drifted away
- most of the Earth was covered by an ice sheet at the time
- Earth rotated differently, so the poles were in different places
Longitude evidence
- a test of movement over years

• Wegener knew that the longitude of Greenland had first been measured in 1820, then in 1870. He was an assistant on the Greenland expedition of 1906/8 when longitude was measured again. These measurements showed that Greenland was moving west at about 20 metres per year

• Hypothesis? - what could account for this measured movement?

 Greenland is moving at around 20 m per year (and so are the other continents)
 or
 the measurements were inaccurate
 or
 the calculations based on the measurements were incorrect
Why wasn’t Wegener believed?

• It wasn’t until 40 - 50 years later, in the 1960s, that scientists started to believe that the continents had moved, and developed the theory of ‘plate tectonics’

• Hypothesis? - why do you think Wegener wasn’t believed at the time?
Why wasn’t Wegener believed?

It is difficult to get into the minds of scientists at the time to answer this question - but the following have been said:

• the scientific consensus view at the time was that everything was ‘fixed’ - continents might move up and down or be crumpled by a shrinking Earth, but they couldn’t be moved laterally

• he was a meteorologist - how could he come up with ground-breaking ideas in geology?

• he was German - at a time when many nations had been at war with Germany

• he published in German - a language that was not widely read by scientists - none of his ideas, first formulated in 1912, were translated into English until 1924

• he was wrong about the rate of drift of Greenland

• the influential British physicist, Sir Harold Jeffreys, said that the continents didn’t have enough strength for ‘drift’

• the forces that Wegener proposed as the cause of ‘drift (the ‘flight from the poles’) were nothing like strong enough
Born in Berlin, Germany on 1st November 1880

Went to Köllsches secondary school

Studied at Universities of Heidelberg, Innsbruck and Berlin

Made a record balloon flight of 52.5 hours with his brother in 1906

First of ‘continental drift’ theory in Jan 1912

Joined the German army in 1914, shot in the arm and the neck

First described his ‘continental drift’ theory in a lecture

Published his ideas with four editions: 1920, 1922, 1929 - the last two editions translated into English

Became a polar explorer in 1906, second expedition, 1912

Married Else Köppen, daughter of a meteorology professor, in 1912

Given leave from the army in 1915, ‘unfit for active service’

Became a professor of meteorology in 1924

Began his third polar expedition to Greenland in 1930

Died on the Greenland icecap in November 1930, aged 50
What Wegener knew - and what he didn’t know

How Science Works: Alfred Wegener’s ‘Continental Drift’ theory

- based on his 1929 book
The Earth and Plate Tectonics
Continental jigsaws - the ‘matching’ evidence

Debating the reconstruction of the super-continent of ‘Gondwanaland’ © Peter Kennett
The Earth and Plate Tectonics

The Continental Jigsaw (the outlines of the Gondwana continents)

The Continental jigsaws (the outlines of the Gondwana continents) © Author/origin unknown – redraw by Peter Kennett
The Continental Jigsaw

At 1000 m below sea level, the continental rock types give way to oceanic ones. Using this depth for a reconstruction gives a better fit than the present coastlines. Areas of overlap are mostly where features such as deltas have added to the continental margins since break-up.

= Best fit at 1000m depth on continental slope

overlaps
gaps
The Earth and Plate Tectonics
The Continental Jigsaw (former distribution of ice across the Gondwana continents)
The Earth and Plate Tectonics

The Continental Jigsaw

The distribution of **ancient rocks** across South America and Africa

The distribution of **younger rocks** across South America and Africa up to the beginning of the continental split
The Earth and Plate Tectonics

The Continental Jigsaw (distribution of land/freshwater animals and plants in the continents of ‘Gondwanaland’)

Reproduced with kind permission of USGS
The Earth and Plate Tectonics

What is the best way to teach that the Earth has a core?

You could ask your students to draw a picture like this one… or use: Model Earth – Plasticine™ spheres

The Internal structure of the Earth - reproduced with kind permission of USGS, redrawn by ESEU
The Earth and Plate Tectonics

Model Earth – Plasticine™ spheres

• Two spheres, different colours - other differences?

• There are five possible theories
The Earth and Plate Tectonics

One feels heavier, and it is - reasons could be:

- something heavy in the centre of the heavy one
- something light in the centre of the light one
- one gets steadily lighter towards the centre
- one gets steadily heavier towards the centre
- one is made of heavier ‘stuff’ than the other
The Earth and Plate Tectonics

How could you find out which is right - without destroying the ball?

• Stick a pin in
• Magnetism
• Inertia
• Ultrasound
• X-ray
• Ionising radiation (α, β, γ)

Which of these could you use on the Earth in an attempt to find out what is in the middle?
The Earth and Plate Tectonics

Which of these could you use on the Earth to find in an attempt to find out what is in the middle?

• Stick a pin in - no, can’t drill that deep
• Magnetism - yes, measure and interpret effects
• Inertia - yes, measure and interpret effects
• Ultrasound - yes, lower frequency seismic waves
• X-ray - no, can’t penetrate that far
• Ionising radiation - no, can’t penetrate that far

Have we just been learning about science or ‘doing’ science?
The Earth and Plate Tectonics

The magnetic evidence

From Magnetic Globe to Magnetic Rock Evidence
The Earth and Plate Tectonics
Preserving remanent magnetisation
The Earth and Plate Tectonics
A Magnaprobe™ - from an online supplier

Magnaprobe - Magnetic field demonstrator
by Cochrane of Oxford

£14.15 + £2.00 delivery
Only 6 left in stock - order soon.

Manufacturer recommended age: 36 Months and up
The Earth and Plate Tectonics

The earthquake distribution evidence
The Earth and Plate Tectonics

Distribution of earthquakes – what does the distribution show?

Depth of focus of earthquake

- **Shallow:** 0 - 70 km
- **Intermediate:** 71 - 300 km
- **Deep:** 301 - 700 km
The Earth and Plate Tectonics

Distribution of earthquakes – what does the distribution show?

- Plate margins – shown by earthquake distributions
- Plate shapes
- Deep focus earthquakes = subduction
- Shallow focus earthquakes only = constructive margins

Depth of focus of earthquake:
- Shallow: 0 - 70 km
- Intermediate: 71 - 300 km
- Deep: 301 - 700 km

(map showing distribution of earthquakes and plate boundaries)
The earthquake that caused this damaged produced both P- and S-waves – but what are these waves?
The Earth and Plate Tectonics
Earthquakes – the slinky simulation
How earthquakes produce P- and S-waves
The Earth and Plate Tectonics

Earthquakes - the slinky seismic waves demo
How earthquakes produce P- and S-waves
The Earth and Plate Tectonics

Seismic wave summary

<table>
<thead>
<tr>
<th>Wave type</th>
<th>Primary wave</th>
<th>Secondary wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name meaning</td>
<td>fastest wave, so arrives first, called primary</td>
<td>slower wave, arrives second, called secondary</td>
</tr>
<tr>
<td>Other names</td>
<td>longitudinal – travels by vibration along the material</td>
<td>transverse – travels by lateral movement</td>
</tr>
<tr>
<td></td>
<td>push/pull wave; comPressional wave</td>
<td>shake wave; shear wave; sideways wave; slow wave</td>
</tr>
<tr>
<td>Transmission</td>
<td>through solids and fluids (liquids and gases)</td>
<td>through solids only</td>
</tr>
</tbody>
</table>

Earthquake damage is caused mainly by seismic **Surface waves**, and not by Primary or Secondary waves.
The Earth and Plate Tectonics

Wave motion – student molecules

How P- and S-waves are transmitted
The seismic evidence for the structure of the Earth
The Earth and Plate Tectonics

Velocities of P and S waves as they travel into the Earth

The velocities of seismic waves in the Earth
The Earth and Plate Tectonics
The structure of the Earth – from the seismic evidence

Diagram of the internal structure of the Earth, an example of a diagram showing the crust very much thicker than in reality. Reproduced with the kind permission of the U.S. Geological Survey, redrawn by ESEU.
The Earth and Plate Tectonics

The lithosphere, asthenosphere and below:

<table>
<thead>
<tr>
<th>Depth, km</th>
<th>Compositional (chemical) layering</th>
<th>Mechanical (physical) layering</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>Crust</td>
</tr>
<tr>
<td>mean of 15</td>
<td></td>
<td>Lithosphere</td>
</tr>
<tr>
<td>about 100</td>
<td>Mantle</td>
<td>Asthenosphere</td>
</tr>
<tr>
<td>about 250</td>
<td>The rest of the mantle</td>
<td>The rest of the mantle</td>
</tr>
</tbody>
</table>

Note. The crust has a mean thickness of 35 km beneath continents and 6 km beneath oceans giving an overall mean of about 15 km.
The Earth and Plate Tectonics
Modelling the lithosphere and asthenosphere (?)
The Earth and Plate Tectonics
Modelling the lithosphere and asthenosphere (?)

The crust – trainers

The extreme upper mantle – skateboard

The asthenosphere - wheels

The asthenosphere (wheels) flows, carrying the plate of lithosphere = trainers (crust) + extreme upper mantle (skateboard) along
The Earth and Plate Tectonics

Why are the Earth’s tectonic plates called plates?
The Earth and Plate Tectonics
Properties of the mantle – Potty Putty™
Showing how the solid mantle can flow
The Earth and Plate Tectonics
Modelling the mantle
CRAYOLA - The Original Silly Putty - 5" x 7"

PRODUCT DESCRIPTION

Bounce it, stretch it and snap it. Stretch your imagination with this fun collection of silly putty. Ages four and up. Product may stick to fabric and other household surfaces. Made in USA.

- Silly Putty Original
- Non-hardening and non-toxic
- Mold into any shape
- Ages 4+
- This is a bouncy, stretchy, peculiar substance that bounces like rubber and stretches like taffy.

Sku: 615690
In stock!
The Earth and Plate Tectonics

What drives the plates?

Theoretical driving mechanisms of plate movement © Pete Loader
The Earth and Plate Tectonics

What drives the plates?
The Earth and Plate Tectonics
What drives the plates?
The Earth and Plate Tectonics

The heat flow evidence

The pattern of heat flow from the Earth

The pattern of heat flow out of the ocean floor and the upper part of the mantle and the crust © Chris King and Dee Edwards, redrawn by ESEU
The Earth and Plate Tectonics
The pattern of heat flow from the Earth

High heat flow – from rising current at ridge
Heat flow reducing as plate cools
Lowest heat flow at trench
High heat flow from volcanicity

The pattern of heat flow out of the ocean floor and the upper part of the mantle and the crust © Chris King and Dee Edwards, redrawn by ESEU
The Earth and Plate Tectonics

The age of the ocean floor evidence: ocean floors are young where new plate is being formed, becoming older outwards
The Earth and Plate Tectonics
Evidence from the age of the sea floor

Age of the sea floor – youngest = red, oldest = blue
The Earth and Plate Tectonics

Constructive plate margins - adding new plate material
The Earth and Plate Tectonics
Activity at an oceanic ridge – a constructive plate margin
The Earth and Plate Tectonics

Mid-Atlantic ridge

http://maps.grida.no/go/graphic/world-ocean-bathymetric-map
(Hugo Ahlenius, UNEP/GRID-Arendal)
The Earth and Plate Tectonics

Black smoker activity

Black Smoker’ by US National Oceanic & Atmospheric Administration (public domain)
The Earth and Plate Tectonics

Icelandic-type eruption

Icelandic-type eruption - reproduced with kind permission of U.S. Department of Interior, USGS
The Earth and Plate Tectonics

Ancient pillow lavas

Ancient Pillow lavas © Peter Kennett
The Earth and Plate Tectonics

Faults in a Mars™ Bar

Modelling a constructive plate margin

Gap between the North American and Eurasian continental plates © Randomskk
The Earth and Plate Tectonics

Faults in a Mars™ Bar
The Earth and Plate Tectonics

Faults in a Mars™ Bar

rigid ‘lithosphere’ moving left rigid ‘lithosphere’ moving right

central ‘rift valley’

ductile flowing ‘asthenosphere’

solid ‘mantle’
The Earth and Plate Tectonics
The magnetic stripes evidence

Research ship used to tow magnetometer
Magnetic anomalies over the Reykjanes Ridge

Black = positive anomaly
White = negative anomaly

The magnetometry (magnetic readings) of the sea floor showing the Atlantic ridge and the symmetrical spread away from this axis.

1000 metres below sea level contour

rocks less than 2 million years old

ICELAND

66°N
64°N
62°N
60°N
58°N
34°W
32°W
30°W
Magnetic evidence for ocean floor spreading
The Earth and Plate Tectonics

Classroom demonstration of concepts associated with sea floor spreading

- Fold
- Piece of card marked with symmetrical bands either side of the fold
- Pin magnetised by stroking with magnet
- Card pulled to represent direction of plate movement

Classroom demonstration of concepts associated with sea floor spreading © ESTA redrawn by ESEU
The Earth and Plate Tectonics
Conservative plate margins - sliding
The Earth and Plate Tectonics

Conservative plate margins - sliding
The Earth and Plate Tectonics

Destructive plate margins - recycling material
The Earth and Plate Tectonics

Destructive plate margins - recycling material

Ocean v ocean
destructive plate margin
– one oceanic plate subducted beneath another

Ocean v continent
destructive plate margin
– an oceanic plate subducted beneath a continental plate

 Continent v continent
destructive plate margin
– two continental plates colliding
Partial melting - producing new materials that are chemically different and of lower density
The Earth and Plate Tectonics

Partial melting
The Earth and Plate Tectonics

Magma composition evidence

1. The mantle is made of peridotite – very rich in iron/magnesium-rich minerals, very poor in oxygen/silicon-rich minerals (compared with crustal rocks)

2. Oceanic ridge volcano, with more oxygen/silicon, less iron/magnesium than the mantle

3. Island arc volcano, with even more oxygen/silicon and less iron/magnesium

4. Continental volcano, with even more oxygen/silicon and less iron/magnesium

Oceanic crust – thin top layer of plate

Continental Crust – top layer of plate
The Earth and Plate Tectonics

1. **The mantle** is made of peridotite – very rich in iron/magnesium-rich minerals, very poor in oxygen/silicon-rich minerals (compared with crustal rocks)

- Iron/magnesium-rich mineral: dark in colour, relatively high density
- Oxygen/silicon-rich mineral: pale in colour, relatively low density

Peridotite: around 95% iron/magnesium-rich minerals, around 5% oxygen/silicon-rich minerals

Block of 100 squares – represents the percentage of minerals in rock
2. Beneath ocean ridges, mantle peridotite partially melts producing basaltic magma (iron/magnesium-rich, oxygen/silicon-poor)

The mantle: very iron/magnesium-rich, very oxygen/silicon-poor rock (compared with crustal rocks)

Peridotite – very rich in iron/magnesium, very poor in oxygen/silicon (compared with crustal rocks)

Partial melting

Oceanic crust: iron/magnesium-rich, oxygen/silicon-poor crustal rock

Basalt – fine-grained basaltic rock

Dolerite – medium-grained basaltic rock

Gabbro – coarse-grained basaltic rock
2. **Beneath ocean ridges**, mantle peridotite partially melts producing basaltic magma (iron/magnesium-rich, oxygen/silicon-poor)

- Partially melts - rises
- Stays solid – stays behind

- Oxygen/silicon-rich mineral: pale in colour, relatively low density
- Iron/magnesium-rich mineral: dark in colour, relatively high density
2. **Beneath ocean ridges**, mantle peridotite partially melts producing basaltic magma (iron/magnesium-rich, oxygen/silicon-poor)

Basaltic magma: cools to produce rocks with around 50% iron/magnesium-rich minerals, around 50% oxygen/silicon-rich minerals.

- Oxygen/silicon-rich mineral: pale in colour, relatively low density
- Iron/magnesium-rich mineral: dark in colour, relatively high density
The Earth and Plate Tectonics

Oceanic ridge

- **Gabbro** – coarse-grained basaltic rock
- **Dolerite** – medium-grained basaltic rock
- **Basalt** – fine-grained basaltic rock

Oceanic crust: iron/magnesium-rich, oxygen/silicon-poor crustal rock

- Peridotite – very rich in iron/magnesium, very poor in oxygen/silicon (compared with crustal rocks)
- Dolerite – medium-grained basaltic rock
- Gabbro – coarse-grained basaltic rock
The Earth and Plate Tectonics
Magma composition evidence

Oceanic crust: iron/magnesium-rich, oxygen/silicon-poor crustal rock.

Gabbro with dolerite above, overlain by pillow basalt

The mantle: very iron/magnesium-rich, very oxygen/silicon-poor rock (compared with crustal rocks)

3. Island arc volcano, with even more oxygen/silicon and less magnesium/iron

4. Continental volcano, with even more oxygen/silicon and less iron/magnesium

Continental Crust – top layer of plate
Destructive plate margins:
where plate material is recycled

'A satellite view of the Aleutian Islands, Pacific Ocean' by NASA (public domain)
The Earth and Plate Tectonics

Ocean-ocean convergence

Two oceanic plates meet in the open ocean. The denser plate is subducted into the mantle. Partial melting produces magma which rises to form an island arc.
The Earth and Plate Tectonics

Island arc volcanism

Zavodovski Island, South Sandwich Island, South Atlantic (Peter Kennett)
The Earth and Plate Tectonics

Magma composition evidence

Oceanic crust: iron/magnesium-rich, oxygen/silicon-poor crustal rock.

Gabbro with dolerite above, overlain by pillow basalt

The mantle: very iron/magnesium-rich, very oxygen/silicon-poor rock (compared with crustal rocks)

Oceanic crust – thin top layer of plate

Continental Crust – top layer of plate

3. Island arc volcano, with even more oxygen/silicon and less magnesium/iron

4. Continental volcano, with even more oxygen/silicon and less iron/magnesium
3. **Island arcs** – beneath island arcs, oceanic crust partially melts producing andesitic magma (iron/magnesium-moderate, oxygen/silicon-moderate)

Oceanic crust: iron/magnesium-rich, oxygen/silicon-poor rock.

Gabbro with dolerite above, overlain by pillow basalt

Andesitic island arc volcanoes – iron/magnesium-moderate, oxygen/silicon-moderate rock

Andesite – fine-grained andesitic rock
3. **Magma composition evidence** – beneath island arcs, oceanic crust partially melts producing andesitic magma (iron/magnesium-moderate, oxygen/silicon-moderate)

- Partially melts - rises
- Stays solid – stays behind

- **Iron/magnesium-rich mineral:** dark in colour, relatively high density
- **Oxygen/silicon-rich mineral:** pale in colour, relatively low density
3. **Island arcs** – beneath island arcs, oceanic crust partially melts producing andesitic magma (iron/magnesium-moderate, oxygen/silicon-moderate)

Andesitic magma: cools to produce rocks with around 30% iron/magnesium-rich minerals, around 70% oxygen/silicon-rich minerals.

- **Oxygen/silicon-rich mineral**: pale in colour, relatively low density
- **Iron/magnesium-rich mineral**: dark in colour, relatively high density
The Earth and Plate Tectonics
Magma composition evidence

Oceanic crust:
iron/magnesium-rich,
oxygen/silicon-poor crustal rock.

Gabbro with
dolerite above,
overlain by pillow basalt

Andesitic island arc volcanoes – iron/
magnesium-moderate,
oxygen/silicon-moderate rock

© Beatrice Murch from Buenos Aires, Argentina

The mantle: very iron/magnesium-rich,
very oxygen/silicon-poor rock (compared with crustal rocks)

Oceanic crust – thin top layer of plate

Continental Crust – top layer of plate

4. Continental volcano, with even more oxygen/silicon and less iron/magnesium
The dense oceanic plate descends below the lighter continental one. Partial melting of the basaltic rocks of the ocean floors produces magma which rises. It is richer in silica than basalt and erupts in a more violent way.
The Earth and Plate Tectonics

Ocean-continent convergence:
Mount St Helens
The Earth and Plate Tectonics
Magma composition evidence

Oceanic crust:
iron/magnesium-rich,
oxxygen/silicon-poor crustal rock.

Gabbro with
dolerite above,
overlain by pillow basalt

Andesitic island arc volcanoes – iron/magnesium-moderate,
oxygen/silicon-moderate rock

4. Continental volcano, with even more oxygen/silicon and less iron/magnesium

Oceanic crust – thin top layer of plate

The mantle: very iron/magnesium-rich, very oxygen/silicon-poor rock (compared with crustal rocks)

© Beatrice Murch from Buenos Aires, Argentina

Continental Crust – top layer of plate
The Earth and Plate Tectonics

- **Continental crust** – beneath continents, material partially melts producing silicic magma (iron/magnesium-poor, oxygen/silicon-rich)

Subducting plate (oceanic crust) and the base of the continent partially melt.

Partial melting

Volcanic ash, often fine iron-poor, silica-rich ash.

Granite – coarse-grained silicic rock.

Continental volcanoes and intrusions: iron/magnesium-poor, oxygen/silicon-rich rock.
4. Continental crust – beneath continents, material partially melts producing silicic magma (iron/magnesium-poor, oxygen/silicon-rich)
The Earth and Plate Tectonics

4. **Continental crust** – beneath continents, material partially melts producing silicic magma (iron/magnesium-poor, oxygen/silicon-rich)

Silicic magma: cools to produce rocks with around 15% iron/magnesium-rich minerals, around 85% oxygen/silicon-rich minerals

- **Iron/magnesium-rich mineral:** dark in colour, relatively high density
- **Oxygen/silicon-rich mineral:** pale in colour, relatively low density
The Earth and Plate Tectonics

The effects of partial melting: a summary

Oceanic crust: iron/magnesium-rich, oxygen/silicon-poor crustal rock.

Gabbro with dolerite above, overlain by pillow basalt

The mantle: very iron/magnesium-rich, very oxygen/silicon-poor rock (compared with crustal rocks)

© Beatrice Murch from Buenos Aires, Argentina

Andesitic island arc volcanoes – iron/magnesium-moderate, oxygen/silicon-moderate rock

Continental volcanoes and intrusions – iron/magnesium-poor, oxygen/silicon-rich

Continental crust – top layer of plate
The Earth and Plate Tectonics

The effects of partial melting – on density

Oceanic crust: iron/magnesium-rich, oxygen/silicon-poor crustal rock.

High density crustal rock – can be subducted

Andesitic island arc volcanoes – iron/magnesium-moderate, oxygen/silicon-moderate rock – cannot be subducted

Low density continental rock – can never be subducted

The mantle: very iron/magnesium-rich, very oxygen/silicon-poor rock (compared with crustal rocks)

Very high density rock (compared with crustal rocks)

© Beatrice Murch from Buenos Aires, Argentina

Continental volcanoes and intrusions – iron/magnesium-poor, oxygen/silicon-rich rock
The Earth and Plate Tectonics
Partial melting

<table>
<thead>
<tr>
<th>SCIENTIFIC ACCURACY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whilst partial melting plays a major role in forming iron/magnesium-rich magmas from mantle peridotite,</td>
</tr>
<tr>
<td>and oxygen/silicon-rich magmas from lower crustal melting beneath continents,</td>
</tr>
<tr>
<td>recent research has confirmed that the formation of andesitic magmas (neither oxygen/silicon-rich nor iron/magnesium-rich) is much more complex, and partial melting only plays a small part in the formation of some of them</td>
</tr>
</tbody>
</table>
The Earth and Plate Tectonics

A volcano in the lab

Click to set the volcano off
The Earth and Plate Tectonics

Plates in motion – cardboard replica

A working model of how colliding continents produce mountain chains

The Earth and Plate Tectonics

Continent-continent convergence

When two continents are brought together at a converging plate boundary, the continental rocks are of too low density to be subducted. Instead they become folded and faulted, to form a mountain range.

Continental plate collision zone. Reproduced with kind permission of USGS, redrawn by ESEU
The rapid northward drift of the Indian plate (at 15-40cm per year) produced the Himalayas and Tibetan Plateau when it collided with the Eurasian plate.
The Earth and Plate Tectonics

Plates in motion:
cardboard replica plates in motion
The Earth and Plate Tectonics

Plates in motion:
cardboard replica plates in motion

Cardboard replica of plates in motion (diagram) © ESTA, redrawn by ESEU
The Earth and Plate Tectonics

Fold mountains in a chocolate box
The Earth and Plate Tectonics
Fold mountains in a chocolate box

Note: This activity forms part of the ‘Dynamic Rock Cycle’ ESEU workshop
The Earth and Plate Tectonics
Fold mountains in a chocolate box

Note: This activity forms part of the 'Dynamic Rock Cycle' ESEU workshop
The Earth and Plate Tectonics

Map of plates

Map of Plates © This Dynamic Earth: the Story of Plate Tectonics, USGS, redrawn by ESEU
The Earth and Plate Tectonics

Rate of plate movement
The Earth and Plate Tectonics

What am I doing?
The Earth and Plate Tectonics

Plate-riding

‘Surfer’ by United States Marine Corps (public domain)
The Earth and Plate Tectonics
Plate-riding

‘How fast am I going?’

‘In which direction am I travelling?’

‘What is happening behind me?’

‘What is happening in front of me?’

‘How can I tell I’m moving?’
The Earth and Plate Tectonics

Plate-riding

‘How fast am I going?’
(as fast as our fingernails grow);
‘In which direction am I travelling?’
(towards the East);
‘What is happening behind me?’
(new plate material is being formed, as in Iceland);

‘What is happening in front of me?’
(I’m heading towards the Japanese subduction zone, with its earthquakes, volcanoes and mountains);
‘How can I tell I’m moving?’
(GPS measurements over several years, magnetic stripe evidence; evidence from the age of ocean floor sediments.)
The Earth and Plate Tectonics
Plate margins and movement by hand

Plate margins and movement by hand
Modelling plate margins and plate movement with your hands

Ask your pupils to model each of the following with their hands:

A divergent plate margin:

An ocean-ocean divergent plate margin (production zone)

An ocean-continent divergent plate margin (subduction zone)

A continental transform plate margin

The elastic rebound theory generating earthquakes at a fault, such as the San Andreas Fault:

Plate movement over a mantle plume

Title: Plate margins and movement by hand

Subject: Modelling plate margins and plate movement with your hands

Topic: A class activity to help pupils to visualise plate margins and movements through modelling with their hands.

Age range of pupils: 10 years upwards

Time needed to complete activity: 5 minutes

Pupil learning outcomes: Pupils can:
- describe different types of plate margin and movement;
- model them with their hands.

Context:
The educational advantages of using your hands to model geoscience features and processes have been explained in the EarthLearningIdeas Rock cycle at your fingertips.

Participants at the G3T Conference in Vienna, Austria 2017, modelling plate margins with their hands. (Photo: Gundelopoulou)
The Earth and Plate Tectonics

Prediction of earthquakes - ‘Brickquake’

How earthquakes work –
and how difficult they are to predict

Ground deformation after an earthquake © National Geophysical Data Center (NGDC)
The Earth and Plate Tectonics

Brickquake – can earthquakes be predicted?
How earthquakes work –
and how difficult they are to predict
The Earth and Plate Tectonics

`Brickquake` results

<table>
<thead>
<tr>
<th>Distance moved (cm)</th>
<th>Force (Newton)</th>
<th>Relative energy released</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>7.5</td>
<td>45</td>
<td>337.5</td>
</tr>
<tr>
<td>3.5</td>
<td>35</td>
<td>122.5</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>100</td>
</tr>
</tbody>
</table>
The Earth and Plate Tectonics

Tsunami
- making waves
The Earth and Plate Tectonics

Tsunami - making waves